Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
AIMS Mathematics ; 7(1):756-783, 2022.
Article in English | Scopus | ID: covidwho-1481070

ABSTRACT

This paper derived fractional derivatives with Atangana-Baleanu, Atangana-Toufik scheme and fractal fractional Atangana-Baleanu sense for the COVID-19 model. These are advanced techniques that provide effective results to analyze the COVID-19 outbreak. Fixed point theory is used to derive the existence and uniqueness of the fractional-order model COVID-19 model. We also proved the property of boundedness and positivity for the fractional-order model. The Atangana-Baleanu technique and Fractal fractional operator are used with the Sumudu transform to find reliable results for fractional order COVID-19 Model. The generalized Mittag-Leffler law is also used to construct the solution with the different fractional operators. Numerical simulations are performed for the developed scheme in the range of fractional order values to explain the effects of COVID-19 at different fractional values and justify the theoretical outcomes, which will be helpful to understand the outbreak of COVID-19 and for control strategies. © 2022 the Author(s), licensee AIMS Press.

2.
Results Phys ; 29: 104639, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1364447

ABSTRACT

In this work, the partitioning clustering of COVID-19 data using c-Means (cM) and Fuzy c-Means (Fc-M) algorithms is carried out. Based on the data available from January 2020 with respect to location, i.e., longitude and latitude of the globe, the confirmed daily cases, recoveries, and deaths are clustered. In the analysis, the maximum cluster size is treated as a variable and is varied from 5 to 50 in both algorithms to find out an optimum number. The performance and validity indices of the clusters formed are analyzed to assess the quality of clusters. The validity indices to understand all the COVID-19 clusters' quality are analysed based on the Zahid SC (Separation Compaction) index, Xie-Beni Index, Fukuyama-Sugeno Index, Validity function, PC (performance coefficient), and CE (entropy) indexes. The analysis results pointed out that five clusters were identified as a major centroid where the pandemic looks concentrated. Additionally, the observations revealed that mainly the pandemic is distributed easily at any global location, and there are several centroids of COVID-19, which primarily act as epicentres. However, the three main COVID-19 clusters identified are 1) cases with value <50,000, 2) cases with a value between 0.1 million to 2 million, and 3) cases above 2 million. These centroids are located in the US, Brazil, and India, where the rest of the small clusters of the pandemic look oriented. Furthermore, the Fc-M technique seems to provide a much better cluster than the c-M algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL